Что значит искать иголку в стоге сена. Kingdom Come: Deliverance

Человек, которого мне нужно найти и убить, прячется в сазавском монастыре. Я ничего не знаю о нем, кроме того, что он - один из послушников.

Важные npc и персонажи
  • Святоша
  • Послушник Антоний
Цели
Прохождение

«Иголка в стогу сена» - сюжетное задание в Kingdom Come Deliverance, которое автоматически активируется после завершения квеста «Бедность, целомудрие и послушание ».

Данное описание прохождения основано на мирном решении (хорошем окончании) - арест Святоши, а не его убийство.

Избегайте того, чтобы вас выгнали из монастыря во время прохождения этого задания! Если вас застанут за каким-либо нарушением, то соглашайтесь на одиночное заключение, иначе вас вышвырнут!

Выясни, кто из послушников - Святоша / Убей Святошу / Предай Святошу правосудию

После длинной кат-сцены послушник Антоний придет поговорить с вами.

Выберите следующие диалоги с ним (это избавит вас от некоторых шагов в этом квесте):

  • Мы можем не осматривать обитель?
  • Спасибо за всё. Я сам осмотрюсь.
  • Я сам разберусь.

Впоследствии, поговорите с Антонием еще раз до того, как он уйдет.

Выберите следующие диалоги:

  • Расскажи ему о поисках Святоши.
  • Я хочу найти его и убить.
  • (Убеждение) Пожалуйста, не говори ему ничего. -> Не имеет значения, потерпите ли вы неудачу или преуспеете в этом убеждении.

Оставаясь там, где вы находитесь, и переведите время до 11:00. Теперь вы получите цель «Поешь вместе со всеми». После перевода времени один из послушников может заговорить с вами, спрашивая, выполняете ли вы свою работу в библиотеке. Неважно, что вы ему скажете, он просто выдаст предупреждение.

Поешь вместе со всеми

В 11:00 (полдень) следуйте за монахами в обеденную зону, которая находится на первом этаже. Когда вы выйдете из главной часовни, продолжайте идти, пока не дойдете до конца зала. В конце зала находятся две двери. Пройдите через правую, чтобы войти в столовую.

Садитесь, где есть еда на столе. Вы автоматически начнете есть. Сидите в течение 20-30 секунд и смотрите анимацию, как вы едите. Выйдите из-за стола. Появится предупреждение, что вы были отравлены!

Прогуляйтесь немного, вскоре вы потеряете сознание от яда. Антоний придет поговорить. Выберите следующие диалоги с ним:

  • Какую сделку?
  • Согласен.
  • Хорошо, давай сделаем по-твоему.
  • И что вы будете делать?
  • Где взять кровь в монастыре?
  • Зачем мне ключи?
  • Ладно, это все, что мне нужно знать. Я могу начинать.

Итак, кто такой Святоша? Антоний - Святоша! Поскольку вы сказали ему раньше, что планируете убить Святошу, он испугался и попытался отравить вас. Он надеялся, что яд убьет вас, но этого к счастью не случилось. Поэтому вместо этого он попытался заключить сделку с вами, чтобы вы оба могли выбраться из обители. Пока мы будем следовать его плану, но в конце арестуем его.

Раздобудь кровь

Закончив разговор с Антонием (Святоша), вы все еще находитесь под воздействием яда, и ваше здоровье быстро снижается. К счастью, вы будете стоять рядом с кроватью, когда разговор закончится. Ложитесь спать до 23:00, чтобы восстановить здоровье и пропустить время. Кровь и ключ вы все равно должны будете раздобыть ночью.

В 23:00 вернитесь в столовую, где вы съели отравленную пищу. Войдите в заднюю часть помещения. Появится предупреждение о том, что вы находитесь в запретной зоне.

На столике между двумя дверями вы увидите либо лист бумаги, либо «Козий мех с кровью».

Если здесь бумага, то «используйте» ее, чтобы заказать кровь. Затем вернитесь на следующий день, чтобы забрать «Козий мех с кровью».

Если вам повезет, «Козий мех с кровью» сразу будет на столе. Заберите эту козью шкуру, чтобы выполнить цель.

Продолжайте со следующей целью получения ключей, они находятся рядом!

Раздобудь ключи или отмычки

Из задней части столовой пройдите через дверь, ведущую в складское помещение. Идите прямо и пройдите через вторую дверь. Это приводит к меньшему хранилищу. В самом конце этого второго складского помещения находится полка у стены. Там очень темно, и вы, вероятно, не видите ничего, кроме темноты, но на этой полке находится ключ монастыря! Он находится на правой стороне полки. Когда приблизитесь достаточно близко, появится подсказка «Ключ от монастыря». Возьмите его, чтобы выполнить эту цель.

(Примечание: сюда можно войти только ночью, убедитесь, что вы пришли в 23:00).

Ниже приведен скрин полки с ключом:

Убей Антония / Вернись к Антонию

После получения крови и ключа, возвращайтесь в кровать и спите до следующего утра.

Если вам нужно было «заказать кровь», тогда вернитесь позже, чтобы забрать ее.

Когда у вас будут оба предмета, поговорите с Антонием / Святошей (он отмечен на карте как главная цель). Скажите ему: «У меня есть все, что нужно для побега», и он скажет встретиться с ним сразу после вечерний молитвы.

Сразу же после вечерни встреться с Антонием в опочивальне

Переведите время до 18:00 (что сразу после вечерний молитвы). Затем поговорите со Святошей (Антоний). Он наверху. Святоша с помощью крови инсценирует свою смерть. Теперь следуйте за ним.

Следуй за Святошей

Следуйте за Святошей. Он откроет двери, ведущие на улицу. Если столкнетесь с охранниками, игнорируйте их. После выхода за пределы области начнется разговор.

Выберите диалог:

  • Я не могу отпустить тебя. Я сдам тебя рихтаржу.

Начнется бой со Святошей. Это лёгкий бой, просто продолжайте наносить ему быстрые удары в голову, пока Святоша не откинется. В итоге появится экран загрузки, и вы передадите его рихтаржу автоматически.

На этом задание «Иголка в стогу сена» завершается и начинается следующее - «

Иголка в стоге сена

Теория изобретательства изучает изобретательское творчество с целью создать эффективные методы решения изобретательских задач.

В этом определении присутствует мысль, которая может показаться «еретической»: что же - существующие методы плохи и нуждаются в замене? Но ведь, пользуясь этими методами, люди сделали величайшие изобретения! На этих методах основана современная индустрия изобретений, дающая ежегодно многие десятки тысяч новых технических идей. Чем же плохи существующие методы?

Не будем торопиться с ответом на этот вопрос, посмотрим сначала, как обычно решается изобретательская задача.

Вообще-то изобретатели не очень охотно и не часто рассказывают о путях, которыми они пришли к новой технической идее. Одно из счастливых исключений - книжка Б. С. Егорова «Секрет НСЕ».

Борис Сергеевич Егоров, талантливый изобретатель, подробно и объективно описывает историю создания намоточного станка. Воспользуемся этим и проследим ход мыслей изобретателя.

Итак, прежде всего - задача.

«Представьте себе большую электронно-вычислительную машину, в глубине которой несколько тысяч мельчайших кольцевых трансформаторов. Каждый из них имеет отверстие всего лишь в 2 миллиметра. На каждом из таких колечек намотан тончайший, тоньше человеческого волоса, проводок, покрытый шелковой оболочкой. Это, разумеется, надо было производить вручную, не повредив нежной изоляции. То был изнурительный труд...»

Задача ясна: есть маленькое колечко, сделанное из феррита; нужно быстро и аккуратно обмотать это колечко тонкой изолированной проволокой.

Несколькими годами раньше Б. С, Егоров успешно решил подобную задачу - тогда требовалось механизировать намотку дросселей телефонных фильтров. Внешне обе задачи совершенно подобны: есть кольцо и есть провод, которым нужно обмотать это кольцо. Но крохотное ферритовое колечко значительно меньше, чем кольцо телефонного дросселя, и это принципиально меняло задачу.

«Должен сказать, что задача, которую предстояло разрешить, вначале не показалась мне очень трудной. Но когда я вплотную подошел к ней, это мнение пришлось изменить.

Трудность состояла прежде всего в том, что колечко, на которое следует наматывать провод, было размером лишь в 2 миллиметра».

Действительно, в БЭСМ-2, например, используются ферритовые тороиды марки К-28, имеющие такие размеры: внешний диаметр - 3,1 мм, внутренний диаметр - 2,0 мм, высота - 1,2 мм. В запоминающем устройстве той же БЭСМ-2 применяются еще более миниатюрные тороиды марки ВТ-1 с внутренним диаметром 1,31 мм.

Обмотку этих колечек вели вручную с помощью шпули. Шпуля представляет собой, в сущности, иглу, несущую в себе запас провода. На рис. 1 изображены в увеличенном виде и колечко и шпуля. Поперечное сечение колечка (тороида) может быть квадратным, прямоугольным или круглым - это несущественно.

Разумеется, задача сильно упростилась бы, будь колечко составным. Но ферритовые тороиды изготовляются методами порошковой металлургии: материал прессуется, а затем спекается. Никакая обмотка не выдержит применяемых при этом давлений и температур, поэтому приходится наматывать провод на готовое неразъемное колечко.

Рис. 1. Наматывать провод на колечки приходилось вручную - с помощью шпули.

«Какой же величины должна быть шпулька? Как игольное ушко? Сразу стало ясно, что от шпульки, с помощью которой осуществлялась укладка провода на моем первом станке, придется отказаться, она была бы слишком мала. Это усложняло решение вопроса. А нельзя ли обойтись без нее, заменить ее, использовать совершенно новый принцип намотки? Но каким должен быть этот принцип? Вопросы не давали мне покоя...

А не применить ли здесь маятник?

Это мнение разделяли многие товарищи, с которыми мне приходилось советоваться. И я задумал решить задачу с помощью маятника. Принцип был прост: два маятника, а между ними кольцо; на маятнике игла; правый маятник иглой продевает провод сквозь кольцо и подводит иглу к левому. Кольцо при этом поднимается; игла идет обратно, и все повторяется сначала. Так и осуществляется намотка провода на кольцо. Удивительно просто, и при этом все делается без шпульки».

Была построена модель станка. Ее испытания дали отрицательные результаты - провод натягивался лишь тогда, когда игла находилась в крайнем положении, когда же она была в движении, провод провисал, поэтому витки ложились как попало.

«Я заново, с удвоенной энергией взялся за работу. Попробовал иначе разместить маятники, иначе расположить кольца, и так и этак пытался изменить ход работы маятников, но нить все равно провисала. Я проделал свыше трехсот экспериментов. В конце концов пришел к заключению, что от маятников надо отказаться.

Стало ясно, что следует искать иной принцип работы машины. Но какой? Перебрал несколько разных вариантов, но ни один из них не подходил. Тогда возникла мысль осуществить намотку провода с помощью сжатого воздуха, который выполнял бы роль маятников. Ту же самую иглу будет толкать через кольцо не маятник, а сжатый воздух».

Егоров построил еще одну модель станка. Но сжатый воздух не помог: провод провисал, как и в маятниковом станке.

«И тут в голову пришла мысль, что сам принцип намотки провода на кольцо не годится. Ведь во всех вариантах принцип был один: игла прошивает кольцо. А она не дает возможности держать провод в натяжении. Следовательно, надо отказаться от использования самой иглы и предложить взамен новый, совершенно новый принцип. Но что можно предложить взамен? На этот вопрос не мог никто ответить».

Шло время. Егоров не переставал думать о задаче. И вот однажды появилась новая идея. Случилось это в электричке.

«Я перевожу взгляд на моих соседей, и вдруг мой взор привлекает старушка, которая вяжет кружево. В руках у нее крючок. Она совершает движение рукой - и крючок делает колечко, еще движение рукой - и еще колечко. Я машинально смотрю, не отрывая глаз, на руки вязальщицы. Колечко... Колечко... Мысленно повторяю движение крючка раз, еще раз и еще. Потом я уже представляю себе движение крючка не в руках старушки, а в моем станке...

А что, если вместо шпульки и маятников применить в станке крючки? Крючок захватит провод, который пройдет через колечко. А специальной пружинкой можно будет тогда поддержать провод в натянутом состоянии. Я достаю иглу с ниткой, делаю из иглы крючок, и пытаюсь повторить движения старушки. Раз... другой. Неужели в этом обыкновенном крючке секрет намоточного станка, неужели найдена разгадка казавшейся неразрешимой задачи? Да, так и есть. Витки ложатся на кольцо ровно. Это и есть тот самый принцип, который я так долго искал. С помощью крючков можно осуществить крепкую, надежную намотку витков на кольцо».

Так появился принцип намоточного станка - знаменитого НСЕ.

Что можно сказать о путях, которыми шел изобретатель?

Некоторые особенности сразу бросаются в глаза. Поиски велись, в сущности, наугад. Или, как говорят психологи, методом «проб и ошибок». Возникала идея: «А если сделать так?» Затем следовала ее теоретическая или практическая проверка. Одна идея оказывалась неудачной, выдвигалась вторая, третья...

Схематически этот метод изображен на рис. 2. От точки, которую мы назовем «Задача», изобретатель должен попасть в точку «Решение». Где именно находится эта точка, заранее, конечно, неизвестно. Изобретатель создает определенную поисковую концепцию ПК, т. е. выбирает направление поисков («И я задумал решить задачу с помощью маятника»). Начинаются «броски» в выбранном направлении (они условно обозначены стрелками): «А если попробовать так?» А потом становится ясно, что неправильна вся поисковая концепция - поиски идут не в том направлении («В конце концов пришел к заключению, что от маятников надо отказаться»). Изобретатель возвращается к задаче, выдвигает новую поисковую концепцию («Тогда возникла мысль осуществить намотку провода с помощью сжатого воздуха...») и начинает новую серию «бросков».

В практике количество попыток обычно намного больше, чем изображено на схеме. Егоров говорит о трехстах модификациях одной только первой модели станка, вообще же при поисках решения методом «проб и ошибок» количество попыток очень велико. Требуются тысячи, иногда и десятки тысяч «а если?», чтобы нащупать удачное решение.

Рис. 2. Схема поиска методом «проб и ошибок».

И еще одна очень важная особенность. На схеме стрелки расположены гуще в направлении, противоположном «Решению». Это, конечно, не случайно. Дело в том, что пробы не так хаотичны, как кажется на первый взгляд. Приступая к поискам, изобретатель опирается на свой предыдущий опыт. Егоров однажды уже создал станок для намотки телефонных дросселей, и при решении новой задачи мысль сначала неизбежно шла в привычном направлении: нужна - как и в прошлый раз - шпуля, но она должна быть очень тонкой; заменим ее иглой, т. е. той же шпулей, но без запаса провода.

В сущности, безуспешность почти всех попыток вызвана стремлением так или иначе использовать иглу. Эта первоначальная тенденциозность показана на схеме «вектором инерции» ВИ, выходящим из точки «Задача» и направленным в сторону от «Решения». Большим шагом вперед была мысль, что от иглы нужно вообще отказаться...

Мы еще продолжим разговор о методе «проб и ошибок». Но у читателя уже сейчас есть отличная возможность самому испытать этот метод.

Задача 1

Станок Егорова хорошо справляется с намоткой колечек, если их внутренний диаметр не менее 2 мм. Однако миниатюризация электронных машин требует более мелких колечек. Как и раньше, их обмотку приходится вести вручную. Как ее механизировать? Попытайтесь решить эту задачу. Без теории изобретательства.

Задача предельно наглядна: имеется колечко, сделанное из феррита; внутренний диаметр колечка, скажем, 0,5 мм. Имеется также тонкая изолированная проволока. Надо механизировать намотку.

Количество витков провода, вообще говоря, зависит от назначения тороида и меняется в широких пределах: в тороидальных трансформаторах их обычно несколько сотен, тороидальные элементы запоминающих устройств имеют всего по три витка. Допустим для конкретности, что на каждое колечко надо нанести двадцать витков проволоки.

Два дополнительных соображения. Первое: задача учебная, поэтому нельзя ее изменять, т. е. предлагать решения, связанные с отказом от применения ферритовых колечек. Второе: способ намотки может быть каким угодно, однако он должен обеспечивать высокую производительность: в запоминающем устройстве электронной машины используются сотни тысяч и даже миллионы колечек.

Для решения этой задачи не нужны какие-либо узкоспециальные знания. Но найти хорошее решение методом «проб и ошибок» вряд ли удастся даже опытному изобретателю. По правде сказать, я уверен - вы, читатель, не решите задачу. Тут довольно простой расчет. Предположим, вы не менее талантливы, чем Эдисон. Но ведь и Эдисону, по его собственному признанию, приходилось работать над одним изобретением в среднем семь лет. По крайней мере треть этого времени уходила на поиски идеи.

Вот что писал изобретатель Николай Тесла, работавший одно время в лаборатории Эдисона: «Если бы Эдисону понадобилось найти иголку в стоге сена, он не стал бы терять времени на то, чтобы определить наиболее вероятное место ее нахождения. Он немедленно с лихорадочным прилежанием пчелы начал бы осматривать соломинку за соломинкой, пока не нашел бы предмета своих поисков. Его методы крайне неэффективны, он может затратить огромное количество времени и энергии и не достигнуть ничего, если только ему не поможет счастливая случайность. Вначале я с печалью наблюдал за его деятельностью, понимая, что небольшие теоретические знания и вычисления сэкономили бы ему тридцать процентов труда. Но он питал неподдельное презрение к книжному образованию и математическим знаниям, доверяясь всецело своему чутью изобретателя и здравому смыслу американца».

Вы вряд ли решите задачу о намотке, но все-таки сделайте несколько попыток. В дальнейшем мы посмотрим, как эта задача решается с помощью, методики изобретательства. И тогда вы сможете, основываясь на своем опыте, сопоставить поиски решения путем «проб и ошибок» с планомерными методами, о которых рассказывает эта книга.

Намоточный станок создан талантливым рабочим-изобретателем. Ну, а если поиски решения ведет ученый? Повышается ли тогда эффективность метода «проб и ошибок»?

Некоторое время назад в журнале «Изобретатель и рационализатор» была опубликована статья кандидата технических наук Е. Веретенникова.

Это еще один из тех редких случаев, когда изобретатель говорит о путях, которыми он пришел к новой идее. Задача, решенная Е. Веретенниковым, не отличается особой сложностью, а наличие у изобретателя ученой степени делает этот случай достаточно показательным.

Вот что рассказывает изобретатель:

«Наш Куйбышевский индустриальный институт сотрудничает с Куйбышевским долотным заводом. Завод выпускает долота. Мне кажется, любой, кто попадет на участок сборки шарошечных долот, обязательно подумает: «Нельзя ли делать это как-нибудь по-иному?» Картина, мягко говоря, малоприглядная. Цапфу лапы долота обмазывают густой солидолово-графитной смазкой. Эта смазка играет роль клея. Она удерживает на двух горизонтальных площадках - дорожках качения цапфы - устанавливаемые там ролики подшипника, которые иначе соскальзывали бы в разные стороны. Когда два ряда роликов составлены, на цапфу надевают шарошку. Сборка производится обнаженными руками. На кожу минеральные масла действуют вредно. Кроме того, в этой массе иногда попадаются острые металлические занозы, ранящие руки сборщика. Труд тяжелый, требует высокой квалификации.

Подобный тип сборки, когда необходимо предварительное удерживание деталей в определенном положении друг к другу, весьма распространен. Для промежуточной фиксации пользуются струбцинами, стяжными хомутами, обоймами, применяют временное прихватывание деталей пайкой или сваркой, клеящими веществами или, как в данном случае, густыми липкими смазками.

Сборка шарошечных долот заставила меня задуматься над тем, как, например, удерживать ролики на цапфе при надевании сверху шарошки?»

Итак, задача состоит в следующем.

Для сборки секции бурового долота нужно сначала обложить шарошку двумя рядами роликов. Роликов в ряду несколько десятков. Понятно, что придерживать руками одновременно все ролики невозможно. Значит, нужно найти какой-то способ (вместо «приклеивания» густой мазью), позволяющий удерживать ролики на дорожках качения цапфы до момента, пока цапфа не вставлена в шарошку. Способ этот должен быть простым, производительным, допускающим в дальнейшем автоматизацию сборки.

«Первое, что пришло в голову, - рассказывает далее изобретатель, - была, конечно, веревка. Связать! Но как вытащить ее после сборки? Что ж, можно связать такой пленкой, которая в дальнейшем бесследно растает, растворившись в масле. Пожалуй, это выход... если не считать, что автоматизация сборки ничуть не упрощена.

Дальнейшие раздумья привели к решению, которое оказалось удачным. Надо прилеплять ролики к цапфе, но не клеем и никаким другим веществом. Их будут удерживать магнитные силы!»

Скажем сразу: Е. Веретенников сделал хорошее изобретение. История этого изобретения - плохой роман с хорошим концом. В самом деле, задача возникла давно, и тогда уже существовали средства, необходимые для ее решения. Изобретение запоздало по меньшей мере на 20-30 лет! Е. Веретенников сам подчеркивает, что каждому, кто попадает на участок сборки, обязательно бросится в глаза необходимость усовершенствовать, сборку долот. Задача словно кричала: «Пожалуйста, обратите на меня внимание! Ведь так важно и так нетрудно найти решение!» Но люди проходили мимо...

Это не случайность: в каждой отрасли производства имеется большое число изобретений, которые нужно и можно сделать (при современном развитии науки и техники), но которые еще не сделаны.

Посмотрим теперь, как шла работа изобретателя. Первая мысль - «конечно, веревка». Тут примечательны и «конечно» и «веревка». Исходный пункт размышлений - существующие конструкции (стяжные хомуты и т. д.). Использовать хомут - «металлическую веревку» - невозможно. Отсюда мысль: применить «просто веревку».

Идея «веревки» настолько сковывала воображение изобретателя, что он никак не хотел с ней расставаться. И следующий шаг - снова «веревка» (вот он, «вектор инерции»!), на этот раз пластмассовая... Понятно, что и этот современный вариант «веревки» тоже не привел к решению задачи.

Последовали дальнейшие раздумья, которые наконец дали правильное решение: надо использовать магнитные силы.

Между тем задача эта из числа тех, в которых точная формулировка вопроса автоматически дает нужный ответ. Творчество здесь состоит в самом выборе задачи! Требуется, повторяем, чтобы ролики, укладываемые при сборке вокруг цапфы, не падали до тех пор, пока цапфа не вставлена в шарошку. Металлическая деталь должна прижиматься - на время - к другой металлической детали.

Достаточно так поставить задачу, и из десяти человек, обладающих знаниями в объеме восьми классов средней школы, пять сразу же ответят: «Магнит!»

Можно еще уточнить задачу: металлическая деталь должна «без ничего» (идеальный случай) прижиматься к другой детали (не сильно, только для уравновешивания своего веса). В этом случае из десяти ответов восемь или девять будут правильными.

В дальнейшем, когда мы ближе познакомимся с методикой изобретательства, станут очевидными и другие ошибки, допущенные при решении этой задачи. Но уже сейчас можно сделать некоторые выводы:

1. Изобретатель шел от известного к неизвестному: взял в качестве прообраза уже существующее приспособление (металлический хомут) и попытался его видоизменить. Это дало серию неудачных решений.

Так получилось и у Егорова. Может быть, «вектор инерции» всегда направлен в сторону от решения?..

2. Правильное решение потребовало от изобретателя принципиально иного подхода. Каков был путь к этому новому принципу, от изобретателя ускользнуло. Он уверенно и логично объясняет, как происходил переход отодной неудачной идеи к другой; а затем - разрыв и вместо объяснения ничего не значащие слова: «дальнейшие раздумья привели...».

Вспомним, что Егоров тоже не объясняет, почему правильная идея не появилась раньше.

3. Насколько удачен итог решения, настолько же несовершенен метод поисков этого решения.

Магнитная сборка могла быть изобретена значительно раньше. Давно назрела экономическая необходимость в этом изобретении, и давно появилась техническая возможность его сделать. Но изобретатели либо не замечали задачи, либо не брались за нее всерьез. Был допущен своеобразный «простой» задачи. И расплачиваться за него приходилось дорого: тяжелая и грязная работа годами выполнялась вручную.

Конечно, если говорить об исторически большой дистанции, изобретения появляются закономерно. Так, пароход не мог быть создан раньше появления парового двигателя, а паровой двигатель изобрели, когда возникла экономическая необходимость. Однако зачастую изобретения опаздывают без уважительных причин: есть все объективные условия, чтобы изобрести нечто, а это нечто никак не изобретается...

Закономерный ход исторического развития техники вовсе не означает, что можно сидеть сложа руки, а изобретения, из уважения к законам развития техники, будут появляться сами по себе. «Изобретательская промышленность», выпускающая ценнейшую продукцию - новые технические идеи, работает, в сущности, кустарными методами. «Продукции» выпускается меньше, и она худшего качества, чем это возможно. Порой даже трудно понять, почему та или иная «изобретательская продукция» не появилась значительно раньше.

Можно привести такой пример. Еще на заре автомобилизма на двигателе устанавливали вентилятор. И уже тогда каждый шофер знал: при низкой температуре воздуха вентилятор не нужен, более того, он вреден - напрасно тратит энергию, переохлаждает двигатель. Но выключающийся вентилятор был изобретен лишь в 1951 году! Тут «простой» затянулся почти на полстолетия, и платить за это пришлось реками бесполезно сожженного горючего.

Посмотрим теперь, какова «технология творчества» в более сложных случаях. Возьмем для примера историю изобретения менискового телескопа.

Еще до войны ленинградский оптик Д. Д. Максутов работал над созданием школьного телескопа. Задача состояла в том, чтобы дать простой, дешевый и хороший прибор, способный противостоять всем невзгодам школьной жизни. Известные системы телескопов были сложны, дороги и требовали очень осторожного обращения. Все попытки упростить и удешевить конструкцию приводили к ухудшению оптических качеств. Максутову никак не удавалось «совместить несовместимое».

«Менисковые системы, - рассказывает изобретатель в книге «Астрономическая оптика», - были изобретены мной в первых числах августа 1941 года, где-то на пути между Муромом и Арзамасом во время эвакуации из Ленинграда.

Оставляя Ленинград, а вместе с ним и подготовлявшееся массовое производство школьных телескопов, над реализацией которого с сомнительным успехом прохлопотал половину своей жизни, я задумался над печальной судьбой своего детища. На долю занятого человека редко выпадает возможность две недели ничего не делать и фантазировать на интересующие его темы.

Все ли хорошо в разработанной конструкции школьного рефлектора? Нет, не все хорошо, в частности зеркала, хотя бы и алюминированные, будут быстро выходить из строя. Рефлектор с открытой трубой вряд ли долго проживет в школе. Достаточно уборщице один раз стереть с зеркала пыль, и оно будет испорчено. Прикрыть трубу стеклом? Это, конечно, защитит зеркало. Но из чего сделать стекло? Простое стекло дешево, однако оно поглощает много света. Оптическое стекло хорошо, зато и стоимость его высока».

«Как же улучшить конструкцию? - продолжал размышлять изобретатель. - Единственный, казалось, выход - усложнить конструкцию, расположив в передней части трубы плоскопараллельное защитное окно. Введение плоскопараллельного окна из оптического стекла значительно удорожит инструмент...»

Обо всем этом изобретатель думал много лет. И каждый раз останавливался перед очевидным фактом: простое стекло не годится, а оптическое слишком дорого. Но в поезде Максутов, как он сам подчеркивает, «фантазировал». Иначе говоря, он мог уйти в сторону от «вектора инерции»: проверить варианты, которые считались заведомо невыгодными, произвольно допустить нечто фантастическое. И он мысленно сделал такое допущение: предположим, что оптическое стекло вдруг стало совсем дешевым, тогда сразу появится возможность установить на рефлекторах защитные окна. Что это даст? Прежде всего - продлится жизнь зеркала.

«Герметическая труба приятна еще и в том отношении, что в ней устраняются конвекционные потоки воздуха.

Мысль идет дальше и находит еще одно преимущество телескопа с защитным окном: к окну можно привязать диагональное зеркало, высверлив, например, в окне отверстие, пропустив через него хвост оправы диагонального зеркала, а затем приболтив этот узел к защитному окну. Мы освобождаемся от стойки или растяжек, поглощающих свет, порождающих дополнительные помехи».

Здесь Максутов делает первый шаг на пути к изобретению. Оптическое стекло - нечто вроде неизбежного зла. Ладно, говорит изобретатель, пусть будет оптическое стекло! Но, раз уж приходится его использовать, нельзя ли получить, в порядке своего рода компенсации, какие-то дополнительные преимущества?

Достаточно было поставить вопрос так, чтобы не только специалист, но и вообще каждый человек, знакомый с устройством телескопа, дал правильный ответ. Около входного отверстия трубы укреплено плоское зеркальце, направляющее лучи рефлектора в глаз наблюдателя. Раньше система крепления поглощала много света, теперь же это зеркальце (его называют еще вторичным зеркалом) можно прикрепить непосредственно к защитному окну.

Тут уже не только упрощается крепление вторичного зеркала, а исчезает, в сущности, само зеркало. Функцию вторичного зеркала «по совместительству» будет выполнять центральная часть защитного окна.

«Такая конструкция очень хороша (у вторичного зеркала исчезла оправа, экранирование стало минимальным), но не внесет ли мениск вредных аберраций? По-видимому, внесет (не ахроматическую, а сферическую аберрацию, притом как положительную, так и отрицательную).

И тут-то я чуть-чуть не упустил важного открытия, рассудив, что в таком случае можно рассчитать мениск, не вносящий, аберрации, т. е. безаберрационный мениск».

Внимательно вчитайтесь в эти строки. Изобретателю надо было преодолеть два барьера. Первый барьер - защитное стекло должно быть сделано из дорогого оптического стекла. Выяснилось, что удорожание можно компенсировать: расходы на оптическое стекло окупаются тем, что защитное окно будет выполнять не одну, а несколько функций. Значит, не обязательно прыгать через барьер, можно его обойти...

Но вот изобретатель подошел ко второму барьеру: потребовалось устранить искажения, создаваемые мениском. Казалось, тут бы и применить только что найденный метод компенсации. Пусть аберрация - еще одно неизбежное зло. Надо компенсировать это зло, извлечь из него какую-то пользу, а не устранять!

Однако здесь и проявилась слабость метода «проб и ошибок». На первый взгляд кажется, что пробы беспорядочны. Но в этом беспорядке есть своя система: пробы ведутся по линии наименьшего сопротивления. Легче всего пробовать в привычном направлении, и изобретатель, сам того не замечая, идет туда, где дорога более накатана (и где поэтому вряд ли можно найти новое). Возобновляются попытки перепрыгнуть через барьер, хотя буквально за несколько минут перед этим было открыто, что можно не прыгать, а идти в обход...

«На этих мыслях, - продолжает Максутов, - задержался несколько часов, пока не додумался, что значительно выгодней выбрать такой мениск, который вводит в систему положительную аберрацию, способную компенсировать отрицательную аберрацию сферического зеркала или сферических зеркал.

В этот момент и были изобретены менисковые системы».

Таким образом, второй барьер был преодолен тем же методом компенсации. Мениск искажает световой поток, и изобретатель понял, что с этим не надо бороться. Выгоднее использовать создаваемые мениском искажения для ликвидации других искажений, вызванных погрешностями при изготовлении главного зеркала телескопа - рефлектора.

Изготовление параболического рефлектора - исключительно сложная и трудоемкая работа. Изобретение Максутова позволило заменить параболические рефлекторы неизмеримо более простыми в изготовлении сферическими зеркалами. Раньше сферические зеркала нельзя было применять из-за того, что они создают очень большие искажения. Теперь появилась возможность компенсировать искажения рефлектора искажениями, создаваемыми мениском. Несвершенный (в оптическом смысле) рефлектор и несовершенный мениск, работая спаренно, давали вполне совершенную оптическую систему!

Максутов пишет:

«Работая над теорией менисковых систем и видя их преимущества, невольно вспоминаешь тернистый путь истории оптического приборостроения. Сколько было изломано копий в борьбе сторонников рефлектора и рефрактора! Сколько было затрачено энергии, с одной стороны, на овладение методикой изготовления и исследования точных асферических поверхностей, а с другой - на разрешение проблемы ахроматических стекол! Сколько изготовлено флинтгласа и других трудоемких сортов стекла для тех случаев, в которых их можно было бы и не применять! Наконец, сколько построено дорогих, громоздких и несовершенных телескопов с не менее дорогим и громоздким механическим оборудованием и дорогими помещениями с огромными вращающимися куполами!

Если бы на заре астрономической оптики был известен элементарно простой принцип менисковых систем, в основном доступный пониманию современников Декарта и Ньютона, то астрономическая оптика могла бы пойти по совершенно иному пути и иметь ахроматическую короткофокусную оптику со сферическими поверхностями, базирующуюся лишь на единственном сорте оптического стекла, безразлично с какими константами».

Итак, первостепенное по своему значению изобретение на этот раз запоздало на 250-300 лет!

Какова же его дальнейшая судьба?

Построив менисковый телескоп, Максутов использовал найденную идею для конструирования менисковых микроскопов, биноклей и других оптических приборов. Но даже в оптике идея Максутова была применена только к решению задач, как две капли схожих с первоначальной. Если же задача оказывалась несколько иной, ее не решали вообще или решали, заново проделывая весь тот путь, по которому прошел в свое время Максутов.

Вот история одного из таких изобретений. Обратите внимание - ход рассуждений и полученное решение поразительно напоминают историю изобретения менискового телескопа.

«Идея возникла случайно. Знал я одного человека - он тоже подводник-любитель, много лет носил очки. А под водой?.. Я посоветовал ему сделать маску из плексигласа и выфрезеровать на ней линзы, соответствующие стеклам очков. Идея была заманчива, но это доступно не каждому.

И вдруг оказалось, что решение проблемы находится в... воде. Если сделать плоскопараллельное стекло маски выпуклым, то граница двух сред - воды и воздуха - будет для наблюдателя вогнутой, рассеивающей лучи света, как вогнутые стекла очков. У спортсмена, о котором я упомянул, стекла очков имели минус 2-3 диоптрии. Как показали наши опыты, это эквивалентно стеклу маски с радиусом выпуклости в 15-10 см. Вот тут-то я и понял - дело совсем не в очках. Ведь под водой удаленные предметы видятся искаженно: крупнее и ближе. Но если сделать радиус выпуклости маски 20-25 см, увеличение, передаваемое водой, исчезнет, подводный мир предстанет перед нами в натуральную величину и куда более четко».

Подобно Максутову, изобретатель начал с мысли о том, что нужно убрать лишнюю «крепежную систему» и прикрепить линзы на иллюминаторе маски. Затем пришла догадка: проще вообще обойтись без очков, сделав иллюминаторы выпуклыми, то есть превратить их в мениск. Но мениск «по совместительству» можно использовать, чтобы устранить искажения, которые неизбежны при наблюдении через плоский иллюминатор маски. Так сформулировалась новая техническая идея. Значение ее очень велико, потому что производительность труда водолаза во многом зависит от условий видимости.

Самое ценное в изобретении Максутова - идея допустить недопустимое и потом это компенсировать. Можно смело утверждать, что среди многих не решенных современной техникой задач есть и такие, которые удалось бы решить «методом компенсации». Однако метод этот мало кому известен. Сотни раз описаны менисковые телескопы, но нет ни одной работы, в которой бы говорилось: вот удачная тактика решения самых различных изобретательских задач, используйте ее не только в оптике, но и в других отраслях техники...

До сих пор мы говорили об изобретателях, решавших задачи в одиночку. Может быть, в крупных коллективах дело обстоит иначе. Может быть, там существует более эффективная технология творчества?

Послушаем, что рассказывает генеральный авиационный конструктор Олег Константинович Антонов:

«Когда конструировали «Антея», особенно сложным был вопрос о схеме оперения. Простой высокий киль с горизонтальным оперением наверху при всей ясности и заманчивости этой схемы, рекомендованной аэродинамиками, сделать было невозможно - высокое вертикальное оперение скрутило бы, как бумажный пакет, фюзеляж самолета, имевший огромный вырез для грузового люка шириной 4,4 метра и длиною 17 метров.

Разделить вертикальное оперение и повесить «шайбы» по концам стабилизатора тоже было нельзя, так как это резко снижало критическую скорость флаттера оперения.

Время шло, а схема оперения не была найдена».

Современное авиационное КБ - коллектив, планомерно работающий по общей программе. Генеральный конструктор думает о задаче не в одиночку. Каждым узлом самолета занимается группа талантливых конструкторов, располагающих самой свежей информацией обо всем, что относится к их специальности. Но если останавливается одна такая группа, это сбивает ритм работы всего коллектива. Нетрудно представить себе, что стоит за простой фразой: «Время шло, а схема оперения не была найдена».

«...Как-то раз, проснувшись ночью, - продолжает О. Антонов, - я стал, по привычке, думать о главном, о том, что больше всего заботило и беспокоило. Если половинки «шайбы» оперения, размещенные на горизонтальном оперении, вызывают своей массой флаттер, то надо расположить «шайбы» так, чтобы их масса из отрицательного фактора стала положительным... Значит, надо сильно выдвинуть их и разместить впереди оси жесткости горизонтального оперения...

Как просто!

Я тут же протянул руку к ночному столику, нащупал карандаш и записную книжку и в полной темноте набросал найденную схему. Почувствовав большое облегчение, я тут же крепко заснул».

Обратите внимание: сначала Антонов, как и Максутов, безуспешно пытался убрать вредный фактор. У Максутова вредным фактором была аберрация, у Антонова - масса. А решение оказалось одинаковым: надо не убирать вредный фактор, а сделать его полезным.

Быть может, сегодня в каком-нибудь КБ снова пытаются устранить какой-то вредный фактор. Снова бьются о стенку. А рядом - открытая дверь...

Теперь нетрудно ответить на вопрос, поставленный в начале главы. Методика изобретательства нужна: чтобы изобретательские задачи не «простаивали» и вовремя попадали в поле зрения изобретателей;

чтобы решение изобретательских задач осуществлялось с возможно более высоким коэффициентом полезного действия;

Заготовка сена Для заготовки сена высокого качества травы необходимо скашивать в строго определенные фазы вегетации. Скашивание растений на природных кормовых угодьях в фазе начала цветения, когда в них накапливается наибольшее количество кормовой массы и питательных

У благотворительного фонда В. Потанина есть большая, действующая уже несколько лет программа поддержки молодых вузовских педагогов, успешно сочетающих педагогическую и научную работу. Для распределения грантов организован специальный конкурс. Требований к соискателям много, но среди прочего молодые педагоги должны прочитать для студентов старших курсов научно-популярную лекцию по своей специальности. Воплощение этой замечательной идеи, с одной стороны, позволяет понять, знает ли претендент свой предмет, с другой — от таких лекций имеется вполне очевидная польза: студенты расширяют свой кругозор, получая информацию по смежным, а иногда и вовсе далёким специальностям. Фонд дал редакции «Науки и жизни» возможность познакомиться со всеми лекциями, прочитанными грантосоискателями. Некоторые из них мы опубликовали. Нас привлекли в этих лекциях простота и доходчивость изложения (лекция «От улыбки станет всем светлей», «Наука и жизнь» № 3, 2009 г.), важность темы («Уходя, гасите свет!», «Наука и жизнь» № 6, 2009 г.), современное представление о давно известных вещах («Надежда и опора», «Наука и жизнь» № 8, 2009 г.), неожиданный взгляд на, казалось бы, очевидные явления («Биологические сигнальные поля...», «Наука и жизнь» № 1, 2009 г.). Предлагаем вниманию читателей лекцию, прочитанную кандидатом фармацевтических наук Людмилой Трухачёвой, доцентом Московской медицинской академии им. И. М. Сеченова. История поистине детективная...

Ранним августовским утром 1961 года сотни обезумевших птиц атаковали приморский город Капитола в американском штате Калифорния. Безобидные дотоле серые буревестники стаями и поодиночке на большой скорости врезались в окна и стены домов, пикировали на уличные фонари и нападали на прохожих. Этот инцидент вдохновил Альфреда Хичкока на создание фильма «Птицы».

Четверть века спустя, зимой 1987 года, на острове Принца Эдуарда у североатлантического побережья Канады случилась другая загадочная история: более сотни человек стали жертвами сильнейшего пищевого отравления. Оказалось, что все пострадавшие употребляли в пищу голубые мидии. Помимо привычных симптомов — рвоты, спазмов, диареи и головной боли — у больных возникали потеря ориентации, чувство паники, амнезия, а в некоторых случаях приступы судорог и кома. Практически у всех наблюдались симптомы расстройства психики, пациенты проявляли бесконтрольную агрессивность, часто сопровождавшуюся плачем или смехом. К несчастью, трём пострадавшим так и не удалось помочь — они скончались в первые дни. Более чем у четверти других жертв оказалась нарушена кратковременная память. Они не могли вспомнить ничего из того, что произошло после отравления, некоторые не узнавали своих близких.

Позднее выяснилось, что оба случая — и первый с «сумасшедшими птицами», и второй с «отравленными мидиями» — результат воздействия одного и того же токсического агента. Состояние, которое он вызывает, сейчас известно под названием «синдром отравления амнестическим токсином моллюсков» (ASP). Однако ранее не было ни одного сообщения о пищевых отравлениях мидиями с такими неврологическими последствиями.

Для выяснения всех обстоятельств произошедшего, а также для предотвращения подобных случаев Канадский департамент рыболовства поручил группе морских биологов и химиков выделить и идентифицировать токсический агент.

Первоначальное исследование мидий на наличие известных бактериальных и вирусных патогенов не привело ни к чему. Тесты на тяжёлые металлы и пестициды также оказались отрицательными. В состав образцов, взятых для анализа, входили тысячи различных химических соединений. Как можно из такой сложной смеси изолировать один компонент, при этом не зная ничего о его физических или химических свойствах? Задача не легче, чем поиск иголки в стоге сена.

Допустим, что у нас имеется возможность определить, есть иголка в стоге или её там нет. Тогда алгоритм поиска будет следующим. Сначала делим стог на две половины и проверяем, есть ли иголка в одной из частей. Если нет — эту половину отбрасываем, делим пополам оставшуюся и ищем иглу в следующих половинах. Такие манипуляции «раздели—отбрось—раздели» в конечном итоге приведут к тому, что последняя оставшаяся часть будет представлять не что иное, как искомую иголку. По такой же схеме выстраивалась основная стратегия исследователей, перед которыми стояла задача найти и изолировать токсин.

Прежде всего необходимо было разработать тест, достоверно свидетельствующий о токсичности изучаемых объектов. И здесь не обошлось без экспериментов над животными. Было обнаружено, что наиболее характерную реакцию на токсин проявляют мыши. После введения небольших количеств исследуемого образца в случае присутствия в нём токсина у подопытных животных наблюдалась однозначная неврологическая реакция — мыши начинали неконтролируемо царапать и расчёсывать себе плечи задними лапами. Тест жестокий, однако в свете произошедшей трагедии другого выбора у учёных не было.

Для разделения сложных компонентов в отравленных образцах тканей мидий учёные использовали стандартные физико-химические методы. Обработке подвергались как токсичные, так и нетоксичные образцы мидий. Такой подход необходим для последующего сравнительного анализа, ведь любое различие между образцами могло дать ключ к разгадке тайны.

Проследим за всеми шагами процесса, изображённого на схеме, и попробуем понять, что происходило на каждой стадии.

Разделение на основе растворимости и летучести

На первых трёх стадиях согласно общей стратегии исследователи использовали экстракцию и упаривание.

Экстракция — разделение смеси веществ на основе различий в растворимости. О том, что растворимость веществ в разных растворителях различна, хозяйки хорошо знают на примере ванилина, который плохо растворим в воде и хорошо — в спирте. При жидкостной экстракции происходит распределение растворённого вещества между двумя жидкими несмешивающимися фазами. Обычно одна фаза — это вода, а другая — органический растворитель.

При выпаривании происходит концентрирование раствора в результате испарения растворителя. Экстракт можно упарить до небольшого объёма и тем самым добиться повышения концентрации анализируемого компонента.

Теперь, зная, чем полезны экстракция и выпаривание, вернёмся к поискам токсина.

Чтобы предотвратить возможное разрушение искомого соединения в результате нагревания или взаимодействия с растворителем, экстракцию проводили при комнатной температуре водным раствором метанола, среднего по силе растворителя. Экстракция была недостаточной, но тем не менее успешной: мыши проявляли на метанольный экстракт ту же неврологическую реакцию, что и на исходные образцы устриц. Затем экстракт концентрировали упариванием. Отделённый и сконденсированный пар был нетоксичен, а вот полученный остаток давал необходимую реакцию у мышей. Стало ясно, что яд — вещество нелетучее.

Была проведена вторая экстракция. На этот раз концентрированный экстракт встряхивали со смесью полярного и неполярного растворителей. Использовали дихлорметан и воду: эти растворители не смешиваются и образуют два раздельных слоя.

В дихлорметановой фракции обнаружили окрашенные вещества — пигменты фитопланктона (проще говоря — водорослей). И вот это уже могло стать ключом к выяснению природы токсина. Однако сами по себе пигменты не ядовиты, да и дихлорметановая фракция дала отрицательный результат на подопытных мышах. А вот в водном слое токсин присутствовал. Это позволяло полагать, что искомый объект, по-видимому, представляет собой полярное, ионизирующееся вещество. Теперь исследователи могли сконцентрироваться на водной фракции.

На следующих стадиях использовали хроматографические методы анализа. Здесь нам придётся немного углубиться в теорию...

Разделение в движении

Хроматографический анализ, один из наиболее чувствительных методов, впервые предложенный российским учёным Михаилом Семёновичем Цветом в начале XX века, к началу века XXI превратился в мощнейший инструмент, без которого уже сложно себе представить аналитическую химию, да и не только её.

Первый опыт по разделению и анализу вещества сложного состава, проделанный М. С. Цветом в 1903 году, удивительно прост. Исследователь пропускал через трубку (или, как теперь принято говорить, — колонку) с порошком мела раствор хлорофилла, постепенно разбавляя его бензолом. Через некоторое время в столбике мела стали видны колечки, окрашенные компонентами хлорофилла в разные цвета. Разрезав столбик, М. С. Цвет выделил их в чистом виде и провёл химический анализ каждого отдельного компонента.

Все мы, наверное, так или иначе когда-нибудь занимались хроматографией, особенно повезло в этом смысле нашим родителям. Ведь в прежние годы школьники писали чернилами. И если промокашка попадала на чернильное пятно, то раствор чернил разделялся на ней на несколько «фронтов».

Собственно хроматография основана на распределении одного из нескольких веществ между двумя фазами (например, между твёрдым телом и газом, между двумя жидкостями и т. д.), причём одна из фаз постоянно перемещается. Чем лучше то или иное вещество сорбируется (поглощается) или растворяется в неподвижной фазе, тем меньше скорость его движения, и наоборот, чем меньше сорбируется соединение, тем больше скорость перемещения. В итоге если вначале мы имеем смесь соединений, то постепенно все они, подталкиваемые подвижной фазой, движутся к «финишу» с различными скоростями и в конце концов разделяются.

После разделения необходимо идентифицировать все компоненты и оценить их количественно. Это делается с помощью детекторов, которые уже мало связаны с собственно хроматографическим процессом и основаны на различных физико-химических свойствах изучаемых веществ.

В современных хроматографах длина колонок, в которых происходит разделение веществ, доходит до сотен метров. Для анализа достаточно нескольких миллиграммов (10 -3 г) смеси, а обнаружить в ней можно компоненты массой до нескольких пикограммов (10 -12 г).

Таковы в общих чертах азы хроматографического анализа. А теперь пора снова вернуться к поискам токсического агента в образцах из мидий.

Разделение на основе различий в полярности

Итак, для разделения смеси в оставшемся водном слое на простые компоненты использовали колоночную хроматографию. Образец пропускали через узкую трубку, содержащую микросферы смолы XAD-2. Эти микросферы удерживают неполярные, незаряженные молекулы и пропускают заряженные ионы. XAD-2 особенно эффективна для разделения органических оснований и кислот.

Ионизированные кислоты проходят через колонку и выходят раньше других органических соединений.

Из множества фракций, прошедших через XAD-2, только одна оказалась токсичной. На заключительной стадии эту фракцию разделили с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ). Здесь вновь полярный раствор, содержащий образец, пропускали через колонку с неполярным сорбентом в качестве неподвижной фазы. Полученная высокоочищенная фракция содержала в себе весь яд отравленных мидий. Так наконец токсин был выделен.

Разделение на основе заряда, размера и формы молекул

Однако исследователи должны были убедиться, что конечная фракция, выделенная методом ВЭЖХ, содержит действительно тот самый токсический компонент. Для этого было решено снова разделить водную фракцию XAD-2, но уже с помощью высоковольтного электрофореза на бумаге.

Электрофорез — это метод разделения ионов на основе различий в их относительных зарядах (отношение величины заряда к массе). Ионы, находящиеся между положительным и отрицательным электродами, под влиянием электрического поля начинают двигаться к электроду с противоположным по знаку зарядом. Обычно, чем больше у иона величина отношения заряда к массе, тем быстрее он двигается к электроду. Маленькие высокозаряженные ионы двигаются впереди больших ионов с низким зарядом. На скорость передвижения влияет и форма молекул. Так, молекулы с более концентрированными зарядами передвигаются быстрее.

Исследователи помещали образец на полоску фильтровальной бумаги. Оба конца полоски погружали в буферные растворы, в каждом из которых находился электрод. В процессе анализа ионы содержащихся в анализируемом образце веществ перемещались с различной скоростью и разделялись в виде отдельных полос на бумаге. Для того чтобы эти полосы «проявились», бумагу опрыскивали специальным реактивом.

При электрофорезе фракции XAD-2 рядом с полосой глутаминовой кислоты (одного из образцов сравнения) была обнаружена неизвестная полоса. В контрольных образцах тканей нетоксичных мидий эта полоса отсутствовала. Кроме того, окраска неизвестной полосы абсолютно отличалась от окраски полосы глутаминовой кислоты. Полосу с неизвестным веществом счистили с бумаги, а полученный образец ввели в колонку ВЭЖХ. Оказалось, что по времени удержания этот образец идентичен основному веществу в конечной фракции, разделённой методом ВЭЖХ. Кроме того, данный образец проявлял такую же токсичность, как и образец, исследованный методом ВЭЖХ.

Идентификация токсина по заряду и массе

На заключительном этапе предстояло определить химическую формулу и молекулярную массу выделенного токсина. Задачу решили с помощью масс-спектрометрии.

Этот метод позволяет установить состав молекулы вещества, измерив отношения массы ионов к их заряду. Сначала нейтральные молекулы и атомы превращают в заряженные частицы — ионы, а затем разделяют их, используя законы движения заряженных частиц в магнитном или электрическом поле.

Так вот, с помощью масс-спектрометрии учёные нашли молекулярный вес
(312 г/моль) и молекулярную формулу (С 15 Н 21 NO 6) выделенного токсина. Спектроскопический анализ выявил присутствие двойных связей и спектров, характерных для аминогруппы. А при сравнении спектров вещества со спектрами в международной базе данных соединение было идентифицировано как домоевая кислота.

Домоевая кислота — своеобразный «троянский конь» в мире молекул. Нервные клетки (нейроны) ошибочно принимают её за молекулы глутаминовой кислоты, и эта ошибка становится для них смертельной. Глутамат (ионизированная форма глутаминовой кислоты) — нейротрансмиттер, молекула, в обязанности которой входит передача нервных импульсов с одной клетки на другую. Когда молекула глутамата связывается с глутаматным рецептором на поверхности клетки, рецептор открывает специальный канал для доступа ионов кальция внутрь клетки. Приток зарядов приводит к возникновению электрического потенциала, который распространяется вдоль клеточной мембраны и передаёт информацию о возбуждении на другие нейроны. Частая стимуляция этого механизма может привести к возникновению новых связей между нейронами, так что глутамат играет ключевую роль в процессах мышления, обучения, запоминания информации.

Но избыточное количество глутамата приводит к неконтролируемому возбуждению клетки и в конечном итоге к её гибели. Причём процесс это каскадный, поскольку перевозбуждение гибнущей клетки передаётся по цепи нейронам, находящимся рядом. В конечном итоге этот биохимический каскад может вызвать повреждение мозга и нейродегенеративные расстройства.

Домоевая кислота похожа на глутаминовую. Однако пятичленное кольцо, содержащееся в её структуре, делает молекулу менее гибкой, чем глутаминовая, что вызывает более жёсткое, плотное связывание домоевой кислоты с глутаминовым рецептором. И в результате её возбуждающий эффект оказывается в 30-100 раз выше.

Но остаётся вопрос — как домоевая кислота могла попасть в ткани мидий, а также в анчоусы, которыми питаются птицы у берегов Калифорнии? Здесь надо вспомнить, что в одной из фракций после экстракции были обнаружены пигменты фитопланктона. Тщательное исследование домоевой кислоты привело к обнаружению её носителей — игловидных диатомовых водорослей, названных Pseudo-nitzschia pungens . Эти водоросли найдены во всех океанах мира и, следовательно, могли стать начальным звеном пищевой цепи во многих регионах. Вот так птицы, в пищу которых попали анчоусы, в свою очередь съевшие ядовитые водоросли, отравились домоевой кислотой.

В настоящее время в большинстве приморских стран проводится постоянный мониторинг морепродуктов с помощью метода ВЭЖХ, чтобы вовремя выявить присутствие домоевой кислоты. Меры оказались успешными, и с 1987 года сообщения об отравлениях не появлялись.

Разгадка этой детективной истории вряд ли оказалась бы возможной без современных физико-химических методов анализа.

Литература:
В. С. Асатиани. Химия нашего организма . — М.: Наука, 1969, 304 с.
Ф. Байбуртский. Хроматография — простой способ анализа сложных веществ // Наука и жизнь, 1998, № 2.